Can interspecies affairs in the dark lead to evolutionary innovation?

publication Figure 1 (modified)


Evolutionary adaptation is the adjustment of species to a new or changing environment. Engaging in mutualistic microbial symbioses has been put forward as a key trait that promotes the differential, evolutionary success of many animal and plant lineages (McFall‐Ngai, 2008). Microbial mutualists allow these organisms to occupy new ecological niches where they could not have persisted on their own or would have been constrained by competitors. Vertical transmission of beneficial microbial symbionts from parents to the offspring is expected to link the adaptive association between a given host and microbe, and it can lead to coevolution and sometimes even cospeciation (Fisher, Henry, Cornwallis, Kiers, & West, 2017). Vertical transmission also causes bottlenecks that strongly reduce the effective population size and genetic diversity of the symbiont population. Moreover, vertically transmitted symbionts are assumed to have fewer opportunities to exchange genes with relatives in the environment. In a “From the Cover” article in this issue of Molecular Ecology, Breusing, Johnson, Vrijenhoek, and Young (2019) investigated whether hybridization among different host species could lead to interspecies exchange of otherwise strictly vertically transmitted symbionts. Hybridization of divergent lineages can potentially cause intrinsic and extrinsic incompatibilities, swamp rare alleles, and lead to population extinctions. In some cases, however, it might also create novel trait combinations that lead to evolutionary innovation (Marques, Meier, & Seehausen, 2019). Breusing et al. (2019) linked the concept of hybridization to symbiont transmission, and their findings have significant implications for the study of evolution of vertically transmitted symbionts and their hosts.

Laetitia GE Wilkins
Laetitia GE Wilkins
Postdoctoral Fellow

Interested in host-microbe interactions, their evolution, and their role in ecosystem function and stability.